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J. Phys. A: Math. Gen.29 (1996) 2175–2186. Printed in the UK

‘Critical’ behaviour of weakly bound systems

M Lassaut, I Bulboaca† and R J Lombard
Division de Physique Th́eorique‡, Institut de Physique Nucléaire, 91406 Orsay Cedex, France

Received 15 November 1995, in final form 26 January 1996

Abstract. We consider the class of three-dimensional finite-range, or similar, potentialsλW(r),
depending on a strength constantλ. We study the behaviour of the eigenvalueE as a function
of λ − λc, whereλc is the critical value at the transition from 0→ 1 bound state. For the
` = 0 case, we findE ∝ (λ− λc)

2, whereas the relationship is linear for` > 1. Treating` as
a continuous parameter in the radial Schrödinger equation, we give the evolution of the power
law betweeǹ = 0 and` = 1. Besides spherically symmetric scalar potentials, we also discuss
the case of a repulsive scalar potential combined with a spin–orbit component of the Thomas
form.

1. Introduction

In a previous work [1], we have studied single neutron halo nuclei, characterized by a
single neutron separation energySn which is very small, currently an order of magnitude
lower than the average binding energy per particleB(A)/A. This is justifying a two-
body approximation, and it has given us the motivation to discuss weakly bound states.
In particular, we have found by means of a few numerical examples that the eigenvalue
follows a power law inλ − λc in the vicinity of λc, which is the critical value delimiting
the transition between the zero and one bound state.

It is the purpose of the present paper to place this result on mathematical grounds. This
problem is not restricted to nuclear physics but is encountered in any physical system of
a weakly bound particle at the transition between zero and a few bound states. It should
be the case of an electron weakly bound to a neutral atom, possibly in the presence of a
magnetic field. Our results may also find an application in quantum wires, a subject of
current interest [2, 3]. Finally, similar situations are found in field theory, when looking for
possible bound states according to the values of the Lagrangian parameters [4].

Here we investigate finite-range or similar potentialsλW(r) in three-dimensional space,
depending on the strength constantλ. We consider first spherically symmetric scalar
potentials. We find the power law to be quadratic for` = 0 states and linear for̀> 1. The
transition between these two cases is discussed by considering` as a continuous parameter
in the radial Schr̈odinger equation.

Note that the case of̀ = 0 states can be inferred from the potentials for which the
analytical solution is well known, such as the Hulthén or the Morse potentials. The question
is more delicate for the case of` > 1.

† Permanent address: Department of Fundamental Physics, Institute for Physics and Nuclear Engineering,
Magurele-Bucharest, MG-6, R-76900, Romania.
‡ Unité de Recherche des Universités Paris 11 et Paris 6 Associée au CNRS.
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Furthermore, we also discuss the case of a fixed repulsive scalar potential combined
to a spin–orbit interaction of the Thomas form. We consider only the case of a spin-1/2
particle.

The paper is organized as follows. In section 2 the behaviour of the eigenvalues in
the vicinity of λc is studied for scalar potentials. The case with a spin–orbit potential is
discussed in section 3. Conclusions are drawn in section 4.

2. Scalar potential

In this section, we consider spherically symmetric scalar potentialsλW(r) having at the
most a finite number of bound states for a finite value of the strength constantλ. This class
refer to finite-range potentials or to potentials decreasing fast enough to become negligible
beyond a finite radius.

The Schr̈odinger equation reads(
− h̄2

2m
4 + λW(r)

)
ψ(r) = Eψ(r). (1)

Here,m is the mass of the single particle experiencing the potential W(r), andψ(r) the
single particle wavefunction.

The usual decomposition on the spherical harmonics

ψ(r) =
∑
`,m

fl(r)

r
Ym` (�) (2)

eliminates the angular variables. We are left with the radial second-order differential
equations depending on the value of the angular momentum`,

f ′′
` (λ, E, r) =

(
2m

h̄2 (−E + λW(r))+ `(`+ 1)

r2

)
f`(λ,E, r) (3)

where the prime denotes the derivatives with respect to the variabler.
SinceW(r) is assumed to decrease faster than 1/r2 at infinity, the Bargmann inequality

[5] applies and gives us an upper bound for the number of bound statesn` of the potential,
involving only the attractive partW+ of W(r)

n` 6 − 1

2`+ 1

2m

h̄2 λ

∫ +∞

0
rW+(r) dr. (4)

No bound state exists forλ = 0. For a sufficiently large value ofλ, equation (4) at least
suggests the occurrence of one bound state. For a large class of potentials, this is a sound
conjecture, which can be put on firmer grounds, as shown in appendix A. It is obvious that
the present work deals with potentials belonging to this class, and thus admitting at least
one bound state for a large enoughλ.

Although it can be intuitively inferred thatλc corresponds toE = 0, it can be shown
to be legitimate. The argument is quite general. Indeed, take the radial Schrödinger
equation (3) having a bound stateE < 0, for an attractive potentialλW(r), and no
bound state belowλc. The functionf`(λ,E, r) has the usual characteristics of bound state
wavefunctions for the three-dimensional case: it vanishes at the origin and it is normalizable.
Whenλ andE are varied simultaneously in a way to preserve the bound state, we have

f ′′
` (λ+ dλ,E + dE, r) =

(
2m

h̄2 (−E − dE + λW(r)+ dλW(r))+ l(l + 1)/r2

)
×f`(λ+ dλ,E + dE, r). (5)
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From the usual techniques and taking into account the boundary conditions forf`, we
get

d|E|
dλ

= −
∫ +∞

0
W(r)f 2

` (λ, E, r)dr

/ ∫ +∞

0
f 2
` (λ, E, r)dr. (6)

In the case whereW(r) is negative, the right-hand side is positive definite, and therefore
|E| is an increasing continuous function of the variableλ. Reciprocally,λ is an increasing
continuous function of|E|. Thus, the limiting valueE = 0 provides us with the required
‘critical’ value λc.

Note that the same conclusion can be reached from the scattering state aroundE = 0.
Indeed let r(λ,E) be the first node of the Schrödinger equation for scattering states,
equation (3) forE > 0. Remembering thatf`(λ,E, r(λ,E)) is identically zero and using
the same technique as for (6), developed in [6], it is easy to show that

∂r(λ,E)

∂E
= −2m

h̄2

∫ r(λ,E)
0 f 2

` (λ, E, r)dr

f ′
`(λ, E, r(λ,E))

2
.

Accordingly,E 7→ r(λ,E) decreases whenE increases. This function is monotonic;
it can be inverted and the reciprocalr 7→ E(λ, r) can be defined. When the variabler
tends to infinity,E either tends to zero or to a negative value corresponding to a bound
state (see [6]). AsE is continuous with respect to the parameterλ, the separation valueλc

between zero and one bound state corresponds toE(λc,+∞) = 0. Therefore the energy
corresponding to the transition is zero.

Equation (6) allows us to determine the behaviour of the energy−E = |E| around the
‘critical’ value λc for values of the angular momentum̀> 1. The functionf`(λc, 0, r),
corresponding to the transition towards a bound state, has asymptotic behaviour at infinity
[5]:

lim
r→+∞ r

lf`(λc, 0, r) = D D 6= 0.

For values of̀ > 1, f`(λc, 0, r) is therefore square integrable. From (6) we deduce the
behaviour of the bound-state energy,E, at the vicinity ofλc,

−E = β(λ− λc) ` > 1 (7)

where

β = −
∫ +∞

0
W(r)f 2

` (λc, 0, r)dr

/ ∫ +∞

0
f 2
` (λc, 0, r)dr. (8)

For ` > 1 the bound-state energy varies linearly with the energy.
The s-wave case is more delicate to discuss, since the functionf0(λc, 0, r) becomes

a constant at infinity. On the other hand, a number of analytically solvable models exist
for this case, such as the Hulthén and the Morse potentials. They tell us that the energy
variation obeys a quadratic law around the critical value

E ∝ (λ− λc)
2.

The basic difference betweens- and` > 1-waves is linked to the asymptotic behaviours
of the wavefunctions. To demonstrate this statement, it is useful to consider the angular
momentum̀ as a continuous parameter in the radial Schrödinger equation. This procedure
shows how the transition is occurring.

Let us stress again thatW(r) is supposed to become negligible beyondr = R. The
method follows a reasoning valid for the square well potential. It estimates the logarithmic
derivative atr = R:

v`(λ,E,R) = f ′
`(λ, E,R)/f`(λ,E,R).
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The value ofR can be chosen arbitrarily since the final result does not depend crucially
on it, as we shall see.

The asymptotic part off` for continuous̀ can be represented by

f`(x) ∝ q`(x) = K`+1/2(x)
√

2x/π x =
√

−2m/h̄2ER

where the functionKν is the modified Bessel function of the third kind [7, 8].
In order to discussv` aroundE = 0, we need the ascending series expansion ofq` in

the power ofx. This is given by

q`(x) =
√
π

cos(`π)

2`

x`

( +∞∑
n=0

(x/2)2n

n!0(n− `+ 1/2)
−

+∞∑
n=0

(x/2)2n+2`+1

n!0(n+ l + 3/2)

)
(9)

which can also be written as

q`(x) =
√
π

cos(`π)

2`

x`

(
−

n6`−1/2∑
n=0

(x
2

)2n 0(`− n+ 1/2)

n!

sin(π(`− n− 1/2))

π

+
+∞∑

n>`−1/2

(x/2)2n

n!0(n− `+ 1/2)
−

+∞∑
n=0

(x/2)2n+2`+1

n!0(n+ l + 3/2)

)
. (10)

This expression is valid for every(`− 1/2) not integer. In the latter case, the function
q`(x) is defined by continuity. It is immediate to observe that the value` = 1/2 constitutes
a boundary. Consequently, from the behaviour ofq`(x) asE or equivalentlyx tends to
zero, we distinguish three estimates of the logarithmic derivative, namely

v`(λ,E,R) = − `

R

(
1 − 2m

h̄2

ER2

`(2`− 1)

)
` > 1/2 (11)

v`(λ,E,R) = − `

R

(
1 +

(−mER2

2h̄2

)(2`+1)/2
2π

0(`+ 1/2)2` cos(π`)

)
` < 1/2 (12)

and

v`(λ,E,R) = − 1

2R

(
1 + 2m

h̄2 R
2E ln(−E)

)
` = 1/2. (13)

More details concerning these estimates are given in appendix B. Going back to the
Schr̈odinger equation, we use the same procedure as before, varyingλ andE in a way to
preserve the bound state and get

f ′′
` (λ+ dλ,E + dE, r)f`(λ,E, r)− f ′′

` (λ, E, r)f`(λ+ dλ,E + dE, r)

= 2m

h̄2 (−dE f`(λ,E, r)
2 + dλW(r)f`(λ,E, r)

2). (14)

Neglecting second-order terms,(dE)2, dE dλ and dλ2, this equation yields

f ′
`(λ+ dλ,E + dE, r)f`(λ,E, r)− f ′

`(λ, E, r)f`(λ+ dλ,E + dE, r)

= 2m

h̄2

(
− dE

∫ r

0
f`(λ,E, r

′)2 dr ′ + dλ
∫ r

0
W(r ′)f`(λ,E, r ′)2 dr ′

)
. (15)

Therefore,(
∂2f`

∂r∂λ
(λ,E, r)dλ+ ∂2f`

∂r∂E
(λ,E, r)dE

)
f`(λ,E, r)

−∂f`
∂r
(λ,E, r)

(
∂f`

∂λ
(λ,E, r)dλ+ ∂f`

∂E
(λ,E, r)dE

)
= 2m

h̄2

(
− dE

∫ r

0
f`(λ,E, r

′)2 dr ′ + dλ
∫ r

0
W(r ′)f`(λ,E, r ′)2 dr ′

)
. (16)
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From this, provided thatf`(λ,E, r) 6= 0, the logarithmic derivativev`(λ,E, r) satisfies(
∂v`

∂λ
(λ,E, r)dλ+ ∂v`

∂E
(λ,E, r)dE

)
f`(λ,E, r)

2

= 2m

h̄2

(
− dE

∫ r

0
f`(λ,E, r

′)2 dr ′ + dλ
∫ r

0
W(r ′)f`(λ,E, r ′)2 dr ′

)
. (17)

On the other hand, in the vicinity ofE = 0, λ = λc, v`(λ,E,R) admits a limited expansion

v`(λ,E,R) ' v`(λc, 0, R)+ ∂v`

∂λ
(λc, 0, R)(λ− λc)+ ∂v`

∂E
(λc, 0, R)E. (18)

According to (17) and (18), it follows that

2m

h̄2

(
− E

∫ R

0
f`(λc, 0, r ′)2 dr ′ + (λ− λc)

∫ R

0
W(r ′)f`(λc, 0, r ′)2 dr ′

)
= − `

R
f 2
` (λc, 0, R)g(E)

where g(E) is defined by v`(λ,E,R) = −(`/R)(1 + g(E)). Taking into account
equations (11) and (12), for̀ 6= 1/2, the two casesg(E) ∝ E (` > 1/2) and
g(E) ∝ E(2`+1)/2 (` < 1/2) yield the following expressions,

−E = β(λ− λc) ` > 1/2 (19)

with

β = −
∫ R

0
W(r ′)f 2

` (λc, 0, r ′) dr ′
/( ∫ R

0
f 2
` (λc, 0, r ′) dr ′ + R

2`− 1
f 2
` (λc, 0, R)

)
(20)

and

−E = β(λ− λc)
2/(2`+1) ` < 1/2 (21)

with

β = 2h̄2

mR2

(
−mR cos(π`)0(`+ 1/2)2

∫ R
0 W(r ′)f 2

` (λc, 0, r ′) dr ′

πh̄2f`(λc, 0, R)2

)2/(2`+1)

. (22)

For ` = 1/2 we have

−E = G

(
(λ− λc)

2

R

∫ R
0 W(r ′)f 2

` (λc, 0, r ′) dr ′

f`(λc, 0, R)2

)
(23)

whereG denotes the reciprocal of the functionx ln(x) taken at the vicinity of zero.
Although the derivation of the variation of the energy nearλc uses arguments strictly

valid for finite-range potentials, the generalization to any potential satisfying the usual
integrability conditions (W(r) and rW(r) integrable) is easy to prove. Indeed, the above
expression forβ does not depend crucially onR. This is obvious for the integrals involving
the potential, in which the upper limit can be set to infinity.

For the casè > 1/2, the termRf`(λc, 0, R) tends to zero asR2`−1, and the function
f` is square integrable. Thus the limiting value ofβ is

β = −
∫ +∞

0
W(r ′)f 2

` (λc, 0, r ′) dr ′
/ ∫ +∞

0
f 2
` (λc, 0, r ′) dr ′ (24)

identical to that of equation (8).
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For the two other cases, becausef` ∝ constant×r−` for r > R, β becomes independent
of R, except through the integral over the potential. More precisely

β = 2h̄2

m

(
− m cos(π`)0(`+ 1/2)2

πh̄2

∫ +∞

0
W(r ′)f 2

` (λc, 0, r ′) dr ′
)2/(2`+1)

` < 1/2

(25)

in particular, we recover a quadratic law for the` = 0 case, and

−E = G

(
(λ− λc)2

∫ R

0
W(r ′)f 2

` (λc, 0, r ′) dr ′
)

` = 1/2 (26)

where, in equations (25) and (26), limr→+∞ r`f`(r) is chosen equal to unity.
These few remarks, together with the fact that the pointR can always be chosen in a

region where the asymptotic form of the wavefunction dominates, make our derivation valid
for any potential having a finite number of bound states and becoming negligible beyond
some point.

We shall conclude this section with two illustrative examples, for which the analytical
solution is well known and can be found in many textbooks. Here we shall adopt the
notation of Fl̈ugge [9].

For the Hulth́en potential

V (r) = −V0
e−r/a

1 − e−r/a
the eigenvalues are given by

En = −V0

(
β2 − n2

2nβ

)2

β > n

for the s-wave withβ2 = 2mV0a
2/h̄2.

The transition from the zero to one state (or then − 1 to n states) occurs for
V c0 = h̄2/(2ma2) (or V c,n0 = n2h̄2/(2ma2)). As expected, in the vicinity ofV c,n0 the
eigenvaluesEn follow a quadratic law

En = − m

2h̄2

a2

n2
(V0 − V

c,n
0 )2.

The three-dimensional square well potential gives an opportunity to look for higher
` values. With the notation of [9],V (r) = −V0; r < R and zero outside, the lowest
bound-state energyE1 is the lowest solution of

tan(x0ξ) = f`(x0, ξ)

for the `-wave, wheref`(x0, ξ) is given in [9], in terms ofx0 = R
√

2mV0/h̄
2 and

ξ = √
(V0 − |E|)/V0. Here we study both cases̀= 0 and` = 1. The corresponding

values off`(x0, ξ) are, respectively,

f0(x0, ξ) = − ξ√
1 − ξ2

f1(x0, ξ) = x0ξ(1 − ξ2)

1 − ξ2 + ξ2(1 + x0

√
1 − ξ2)

.

The transition from the zero to one bound state occurs forξ = 1 thereforex0ξ is equal
to eitherπ/2 (̀ = 0) orπ (` = 1). The variation of the eigenenergyE1 in terms ofV0−V c0
given by

|E1| = m

2h̄2R
2(V0 − V c0 )

2 ` = 0
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and

|E1| = 1
3(V0 − V c0 ) ` = 1

follows quadratic and linear laws according to our previous statements.

3. Scalar plus spin–orbit potentials

It is interesting to perform the same kind of investigation in the case of a potential having
a scalar and a spin–orbit component. We consider here only the case of a spin-1/2 particle.
In fact the problem would be similar (if not simpler) for any vector potential coupled to the
spin λW (r) · s. In the present work we focus our attention on the spin–orbit interaction.
Other cases may be developed in future work, if they are found to be of particular interest.
We chose the scalar part to be strictly repulsive, so that bound states can only originate
from the spin–orbit contribution. It can be parametrized in various ways. We choose here
a Thomas form. The total potential is thus written

W(r) = U(r)− λ

r

∂

∂r
U(r)` · s. (27)

In the case of a repulsive central force, only the spin–orbit sublevelsj = `− 1/2 have
a chance to be bound, thej = `+ 1/2 partners staying in the continuum. Thus we are left
with (` > 1):

f ′′
` (λ, E, r) =

(
2m

h̄2 (−E + U(r)+ λ

2
(`+ 1)

1

r

∂

∂r
U(r))+ `(`+ 1)

r2

)
f`(λ,E, r). (28)

The Bargmann inequality becomes

nl 6 −λm
h̄2

`+ 1

2`+ 1

∫ +∞

0

∂

∂r
U(r) dr.

Although the previous conclusions about the transition law aroundλc are still valid we
investigate here a soluble model, namely the square well potential:

U(r) = U02(R0 − r). (29)

The radial Schr̈odinger equation for this case reads

f ′′
` (λ, k, r) =

(
k2 + Ũ02(R0 − r)− λ

2

(`+ 1)

r
Ũ0δ(r − R0)+ `(`+ 1)

r2

)
f`(λ, k, r) (30)

where we have putk2 = −2mE/h̄2, Ũ0 = 2mU0/h̄
2.

The δ distribution is known to produce a discontinuity in the derivative of the
wavefunction atR0. Assuming thatf`(λ, k, r) is constant over an infinitesimal interval
centred onR, the difference between the right and left logarithmic derivatives of the
wavefunction is given by

f ′
`(λ, k, r)

f`(λ, k, r)

∣∣∣∣
R

− f ′
`(λ, k, r)

f`(λ, k, r)

∣∣∣∣
L

= − λ

2R0
(`+ 1)Ũ0.

The solutions of (30) for a bound state are given by

f`(λ, k, r) = x̃`(x) x = r

√
k2 + Ũ0 r 6 R0

f`(λ, k, r) = C(k)e−krP`(kr) r > R0

(31)

whereC(k) is obtained from the continuity condition atr = R0. Use is made here of
the spherical modified Bessel function of the first kindj̃`(x) = √

π/(2x)I`+1/2(x), and of
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the polynomialP`(x) defining the asymptotic behaviour of the modified Hankel’s first kind
functionK`+1/2(x)

√
2x/π (see Abramowitz and Stegun [7] or Erdélyi [8]):

P`(kr) =
∑̀
p=0

(l + p)!

p!(l − p)!
(2kr)−p. (32)

It is straightforward to obtain the following equation for the logarithmic derivative at
R0:

̃`(x0)+ x0̃`(x0)
′
x

̃`(x0)
− λ

2
Ũ0(`+ 1) = −kR0

P`(kR0)− P ′
`(kR0)/k

P`(kR0)
(33)

wherex0 = R0

√
k2 + Ũ0. Here the symbol′x denotes the derivative with respect tox.

In the vicinity of k = 0, the right-hand side of (33) therefore reads

−l
(

1 + 1

l(2l − 1)
k2R2

0

)
∀l > 1.

Similarly, the left-hand side of (33) reads(k = 0, λ = λc)

̃`(xc)+ xc̃`(xc)
′
x

̃`(xc)
+ (x0 − xc)

−̃`(xc)
′
x ̃`(xc)+ xc(̃

2
` (xc)− ̃2

` (xc)
′
x)+ `(`+ 1)/xc̃

2
` (xc)

̃2
` (xc)

−λc

2
(`+ 1)Ũ0 − λ− λc

2
(`+ 1)Ũ0

wherexc = R0

√
Ũ0. Since(x0 − xc) varies withk2, E is linearly dependent onλ − λc as

in the scalar case,

−E = β(λ− λc) (34)

where

β = h̄2

2m

(`+ 1)Ũ2
0 ̃

2
` (xc)

x2
c(2`+ 1)̃`(xc)2/(2`− 1)− (1 + 2`)xc̃`(xc)̃`+1(xc)− x2

c ̃
2
`+1(xc)

. (35)

To get equation (35), use is made of the recurrence relation

̃`(xc)
′
x = `

xc
̃`(xc)+ ̃`+1(xc).

It should be noted that such a critical behaviour, obtained by expanding both sides of
(33) aroundk = 0 andλ = λc, results from the fact that the linear term ink vanishes.
As far as the Bessel function is concerned, since the argument depends onk according to√
k2 + Ũ0, the expansion of the left-hand side yields a term proportional tok2.

For the spin–orbit potential, it is interesting to look for the behaviour ofλc against`.
In the present model it is given by

λc

2
(`+ 1)Ũ0 = (2`+ 1)+ xc

̃`+1(xc)

̃`(xc)
.

Since thẽ`(xc) are positive definite, it shows thatλc > 2Ũ−1
0 (2`+ 1)/(`+ 1), which

gives for λc(`) a lower limit increasing with̀ . Exact values ofλc(`) are displayed in
figure 1. For low values ofxc, xc 6 1.8, (remember thatx2

c = Ũ0R
2
0 ∝ ∫ +∞

0 rU(r) dr), λc

is an increasing function of̀. Beyond this ‘empirical’ value of 1.8,λc increases only for
high enough values of̀. The regime is thus not unique. It is clearly shown that the most
intuitive situation, in whichλc is a continuously increasing function of`, is not universal.
Consequently,λc(`) depends on the geometry of the potential.
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Figure 1. Critical valueλc as a function of the orbital momentum̀and the parameterxc, linked
to the geometry of the potential (see text).

4. Conclusions

In the present work we have studied the variation of the energy eigenvalueE of a weakly
bound particle in the vicinity of a critical value of the strength constantλc. For a potential
λW(r) becoming negligible beyond a given radius, the critical value corresponds to the
transition between the zero and one bound state.

For scalar, spherically symmetric potentials,E varies quadratically with (λ−λc) around
λc for the s-state. The variation is linear for̀> 1. In fact, by letting` to be a continuous
parameter of the radial Schrödinger equation, we found that the evolution of the power law
is continuous from−1/2 6 ` 6 1/2.

Investigating the case of a spin–orbit potential, for a spin-1/2 particle combined with
a scalar repulsive potential, we show that the energyE also follows a linear power law
aroundλc, for the subspace of states withj = `− 1/2.

The present discussion was focused on the transition between the zero and one bound
state. The same arguments can be used to investigate the transition between then − 1
and n bound states. Since we are primarily interested in potentials with a finite number
of bound states, n should not be too large. The basic arguments, however, are based on
the asymptotic behaviour of the wavefunctions and, thus, are independent of the number of
nodes. In particular the transition laws still hold.

Although it may have no application, it is also interesting to note that in the case
of a scalar potential the ensemble of the critical valuesλn is univocally connected to the
ensemble of the bound-state energies when the potentialW , equation (3), is purely attractive
and satisfies

∫ +∞
0

√−W(r) dr < +∞. Indeed, if the critical values are known, they can be
used to reconstruct the potential [5, 10].
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Appendix A

We start from equation (3):

d2

dr2
f`(λ,E, r) =

(
2m

h̄2 (−E + λW(r))+ `(`+ 1)

r2

)
f`(λ,E, r). (A1)

Following [5, 10], use is made of the Liouville transformation

r 7→ Z(r) =
∫ r

0

√
−2m

h̄2 W(r
′) dr ′

f`(λ,E, r) =
(

−2m

h̄2 W(r)

)−1/4

ψ`(λ,E,Z).

Equation (A1) becomes

d2

dZ2
ψ ′′
` (λ, E,Z)+ (λ− q(Z))ψ`(λ,E,Z) = 0 (A2)

where

q(Z) = h̄2

2m

(
− W ′′

r2

4W 2
(r(Z))+ 5

16

W ′2
r

W 3
(r(Z))− `(`+ 1)

r2(Z)W(r(Z))

)
+ E

W(r(Z))
. (A3)

For the potentials we are considering in the present work,Z ∈ [0, I ] where
I = ∫ +∞

0

√
−(2m/h̄2)W(r) dr < +∞. A bound state of energy−E corresponds to

f`(λ,E,0) = f`(λ,E,+∞) = 0 which is mapped intoψ`(λ,E,0) = ψ`(λ,E, I) = 0.
For λ = 0, equation (A1) has no bound state. This means that fixing the boundary

conditions at one extremity of the segment, sayψ`(0, E,0) = 0, we have automatically
ψ`(0, E, I ) 6= 0. The strength parameterλ, however, is acting as a Lagrange multiplier,
and can be chosen in a way to ensureψ`(λ,E, I) = 0 together withψ`(λ,E,0) = 0. Note
thatE plays no major role; apart from being negative it can be chosen close to zero.

To show that the value ofλ corresponding to a given energy−E must be positive and
finite, we multiply the Schr̈odinger equation (A1) byf`(λ,E, r) from the left and integrate.
This yields

h̄2

2m

∫ +∞

0
f ′
`(λ, E, r)

2 dr − λ

∫ +∞

0
|W(r)|f`(λ,E, r)2 dr

+ h̄2

2m
`(`+ 1)

∫ +∞

0

f`(λ,E, r)
2

r2
dr = E

∫ +∞

0
f`(λ,E, r)

2 dr.

The four integrals being positive definite,E < 0 requiresλ > 0.
Finally, using the virial theorem [11], we have

λ

(
− 3

2

∫ +∞

0
f`(λ,E, r)

2r

(
d

dr
|W(r)|

)
dr −

∫ +∞

0
|W(r)|f`(λ,E, r)2 dr

)
= E

∫ +∞

0
f`(λ,E, r)

2 dr. (A4)

BecauseE < 0, we have∫ +∞

0
|W(r)|f`(λ,E, r)2 dr > −3

2

∫ +∞

0
f`(λ,E, r)

2r

(
d

dr
|W(r)|

)
dr.

For the class of potentials considered here,
∫ +∞

0 |W(r)|f`(λ,E, r)2 dr is finite and thus,
from (A4), λ is finite.
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Appendix B

The modified Bessel function of the third kind is defined by [8]

Kν(x) = π

2 sin(πν)
(I−ν(x)− Iν(x))

in terms of the functionIν . Remembering that we have defined̃j`(x) as j̃`(x) =√
π/(2x)I`+1/2(x) we have

q`(x) = x

cos(`π)
(̃−`−1(x)− ̃`(x)).

The present definition of q`(x) corresponds to the asymptotic behaviour
limx→+∞ q`(x) exp(x) = 1. Taking into account

̃`(x) =
√
π

2

+∞∑
m=0

(x/2)2m+`

m!0(m+ `+ 3/2)

we easily obtain for non-integer values of`+ 1/2,

q`(x) =
√
π

cos(`π)

2`

x`

( +∞∑
m=0

(x/2)2m

m!0(m− `+ 1/2)
−

+∞∑
m=0

(x/2)2m+2`+1

m!0(m+ l + 3/2)

)
. (B1)

Using the properties of the0 function it becomes

q`(x) =
√
π

cos(`π)

2`

x`

(
−

m6`−1/2∑
m=0

(x
2

)2m 0(`−m+ 1/2)

m!

sin(π(`−m− 1/2))

π

+
+∞∑

m>`−1/2

(x/2)2m

m!0(m− `+ 1/2)
−

+∞∑
m=0

(x/2)2m+2`+1

m!0(m+ l + 3/2)

)
. (B2)

The expression ofq` for ` = n + 1/2, n ∈ N is deduced from expression (B2) at the
limit ` → n+ 1/2,

qn+1/2(x) = 1√
π

(
2

x

)n+1/2 ( n∑
m=0

(−)m
(x

2

)2m (n−m)!

m!

+(−)n+1
+∞∑
m=0

(x
2

)2m+2n+2 ψ(n+m+ 2)+ ψ(m+ 1)− 2 ln(x/2)

m!(n+m+ 1)!

)
(B3)

or equivalently remembering thatn = `− 1/2,

q`(x) = 1√
π

(
2

x

)̀ ( `−1/2∑
m=0

(−)m
(x

2

)2m (`−m− 1/2)!

m!

+(−)`+1/2
+∞∑
m=0

(x
2

)2m+2`+1 ψ(`+m+ 3/2)+ ψ(m+ 1)− 2 ln(x/2)

m!(`+m+ 1/2)!

)
.

(B4)

The transition law aroundλ−λc requires the knowledge of the logarithmic derivative of
q`(x) at the vicinity of zero. Equation (B1) incorporates two kinds of powers of the variable
x: x2m andx2m+2`+1. We have 2m+ 2`+ 1> 2 (∀` > 1/2), and the first appearing power
of x is quadratic. For low values ofx, we get

q`(x) ∝ 1 + ax2.
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For ` < 1/2 the term inx2`+1 dominates with respect tox2 and we find

q`(x) ∝ 1 + ax2`+1.

The logarithmic derivative ofq` then satisfies (11) and (12). For` = 1/2 use is made
of (B4) where the dominant term, besides the constant, behaves likex2 ln(x) ' x2 ln(x2).
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