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‘Critical’ behaviour of weakly bound systems
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Abstract. We consider the class of three-dimensional finite-range, or similar, potent&ls),
depending on a strength constantWe study the behaviour of the eigenvalBeas a function

of A — A¢, Where ¢ is the critical value at the transition from © 1 bound state. For the

£ =0 case, we findE o« (A — Ac)2, whereas the relationship is linear for> 1. Treating? as

a continuous parameter in the radial Sitinger equation, we give the evolution of the power
law betweer¢ = 0 and¢ = 1. Besides spherically symmetric scalar potentials, we also discuss
the case of a repulsive scalar potential combined with a spin—orbit component of the Thomas
form.

1. Introduction

In a previous work [1], we have studied single neutron halo nuclei, characterized by a
single neutron separation ener@y which is very small, currently an order of magnitude
lower than the average binding energy per partiBlgd)/A. This is justifying a two-

body approximation, and it has given us the motivation to discuss weakly bound states.
In particular, we have found by means of a few numerical examples that the eigenvalue
follows a power law inx — A¢ in the vicinity of Ac, which is the critical value delimiting

the transition between the zero and one bound state.

It is the purpose of the present paper to place this result on mathematical grounds. This
problem is not restricted to nuclear physics but is encountered in any physical system of
a weakly bound particle at the transition between zero and a few bound states. It should
be the case of an electron weakly bound to a neutral atom, possibly in the presence of a
magnetic field. Our results may also find an application in quantum wires, a subject of
current interest [2, 3]. Finally, similar situations are found in field theory, when looking for
possible bound states according to the values of the Lagrangian parameters [4].

Here we investigate finite-range or similar potentialg (r) in three-dimensional space,
depending on the strength constant We consider first spherically symmetric scalar
potentials. We find the power law to be quadratic fet O states and linear faf > 1. The
transition between these two cases is discussed by consideas@ continuous parameter
in the radial Schizdinger equation.

Note that the case of = 0 states can be inferred from the potentials for which the
analytical solution is well known, such as the Hélthor the Morse potentials. The question
is more delicate for the case 6f> 1.
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Furthermore, we also discuss the case of a fixed repulsive scalar potential combined
to a spin—orbit interaction of the Thomas form. We consider only the case of a spin-1/2
particle.

The paper is organized as follows. In section 2 the behaviour of the eigenvalues in
the vicinity of ¢ is studied for scalar potentials. The case with a spin—orbit potential is
discussed in section 3. Conclusions are drawn in section 4.

2. Scalar potential

In this section, we consider spherically symmetric scalar potenti#d¢r) having at the
most a finite number of bound states for a finite value of the strength constdiis class
refer to finite-range potentials or to potentials decreasing fast enough to become negligible
beyond a finite radius.
The Schédinger equation reads

h?
(—zmA + kW(V)) V(r) = Ey(r). @

Here,m is the mass of the single particle experiencing the potential W(r) yamd the
single particle wavefunction.
The usual decomposition on the spherical harmonics

y =3 10y @
t,m

r

eliminates the angular variables. We are left with the radial second-order differential
equations depending on the value of the angular momeidtum

1
(L E, ) = @f(—E FAW () + E(JZ; )) feOL E.r) ®)

where the prime denotes the derivatives with respect to the vantable

SinceW (r) is assumed to decrease faster tharédat infinity, the Bargmann inequality
[5] applies and gives us an upper bound for the number of bound state#fshe potential,
involving only the attractive parv+ of W (r)

1 +oo
—Mi_’z)»/o rW*(r)dr. (4)

No bound state exists for = 0. For a sufficiently large value df, equation (4) at least
suggests the occurrence of one bound state. For a large class of potentials, this is a sound
conjecture, which can be put on firmer grounds, as shown in appendix A. It is obvious that
the present work deals with potentials belonging to this class, and thus admitting at least
one bound state for a large enough

Although it can be intuitively inferred that. corresponds t&& = 0, it can be shown
to be legitimate. The argument is quite general. Indeed, take the radiabdbuiper
equation (3) having a bound state < 0, for an attractive potentiak W(r), and no
bound state below.. The functionf, (A, E, r) has the usual characteristics of bound state
wavefunctions for the three-dimensional case: it vanishes at the origin and it is normalizable.
When i and E are varied simultaneously in a way to preserve the bound state, we have

ne <

V(A4 dr, E+dE, ) = (2;;(—15 —dE +AW () + AW () + 10 + 1)/r2)
X feO. +di, E +dE, r). ©)
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From the usual techniques and taking into account the boundary conditioifs, foe
get
d|E| +00 +0o0

= W(r) fZ(n, E, r)dr/ fEO, E 1) dr. (6)
dx o o

In the case wher® (r) is negative, the right-hand side is positive definite, and therefore
|E| is an increasing continuous function of the variableReciprocally,. is an increasing
continuous function ofE|. Thus, the limiting valueE = 0 provides us with the required
‘critical’ value Ac.

Note that the same conclusion can be reached from the scattering state areud
Indeed letr(A, E) be the first node of the Sdbdinger equation for scattering states,
equation (3) forE > 0. Remembering thaf, (%, E, r (%, E)) is identically zero and using
the same technique as for (6), developed in [6], it is easy to show that

aro.E)  2m [1%F 20, E, ) dr
3E — R2 fJ(ME,r(h E)?
Accordingly, E — r(x, E) decreases wheR increases. This function is monotonic;
it can be inverted and the reciprocal— E (X, r) can be defined. When the variable
tends to infinity, E either tends to zero or to a negative value corresponding to a bound
state (see [6]). A€ is continuous with respect to the parametethe separation valuk,
between zero and one bound state corresponds(ig, +o0o0) = 0. Therefore the energy
corresponding to the transition is zero.
Equation (6) allows us to determine the behaviour of the enerfiy= |E| around the
‘critical’ value ). for values of the angular momentut> 1. The functionf,(ic, 0, r),
corresponding to the transition towards a bound state, has asymptotic behaviour at infinity

[5]:

lim ' fi(re,0,7) =D D #0.
r——+00

For values oft > 1, f,(%, O, r) is therefore square integrable. From (6) we deduce the
behaviour of the bound-state enerdy, at the vicinity of i,

—E =80 -2 t>1 (7)
where

+00 +00

B=- W (r) fZ(he, O, ) dr / [, 0,7) dr. (8)
0 0

For ¢ > 1 the bound-state energy varies linearly with the energy.

The s-wave case is more delicate to discuss, since the funcgfioke, O, r) becomes
a constant at infinity. On the other hand, a number of analytically solvable models exist
for this case, such as the Hudthh and the Morse potentials. They tell us that the energy
variation obeys a quadratic law around the critical value

E o (A — Ao)2.

The basic difference betweenand¢ > 1-waves is linked to the asymptotic behaviours
of the wavefunctions. To demonstrate this statement, it is useful to consider the angular
momentum¢ as a continuous parameter in the radial $dimger equation. This procedure
shows how the transition is occurring.

Let us stress again tha¥(r) is supposed to become negligible beyone= R. The
method follows a reasoning valid for the square well potential. It estimates the logarithmic
derivative atr = R:

ve(A, E,R) = f/(A, E,R)/fe(X, E, R).
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The value ofR can be chosen arbitrarily since the final result does not depend crucially
on it, as we shall see.
The asymptotic part off, for continuoust can be represented by

fe(x) o< qe(x) = Keray2(x)/2x /0 x =/ —2m/h?ER
where the functiork, is the modified Bessel function of the third kind [7, 8].

In order to discus®, aroundE = 0, we need the ascending series expansiog, of
the power ofx. This is given by

B ﬁ 2(3 +00 (x/2)2” +00 (x/2)2n+2€+1
90 = Coden) xf(z(:) M —C+1/2) ; AT (n+1+ 3/2)) ©)
which can also be written as
Jr 2 (_ n<tzl/2 f)ziw T —n+1/2)sin(r( —n — 1/2))

qe(x) =

cog{r) xt — \2 n! b4
N +00 (x/2)2” B f (x/2)2n+2é+1 (10)
n>£71/2n!l"(n—£+1/2) —~ ATn+1+3/2))

This expression is valid for every¢ — 1/2) not integer. In the latter case, the function
q¢(x) is defined by continuity. It is immediate to observe that the vélael/2 constitutes
a boundary. Consequently, from the behaviourggf) as E or equivalentlyx tends to
zero, we distinguish three estimates of the logarithmic derivative, namely

14 2m  ER?
¢ —mER?\# /2 21
ME R)=——|1 _ L <1/2 12
ve(d, £, R) R< +( P ) r(z+1/2)2£cos(ne)) <2 12
and
1 2m _,
(A, E,R) = R <1+ th E In(—E)) £=1/2. (13)

More details concerning these estimates are given in appendix B. Going back to the
Schiddinger equation, we use the same procedure as before, varang E in a way to
preserve the bound state and get

VO dh, E+dE, 1) fi(h, E 1) — £/ E, 1) fr(b+di, E +dE, 1)
2m
= hq(—dE feOo, E, 124+ dA W) fo(h, E, r)?). (14)

Neglecting second-order term&lE)?, dE di and d\?, this equation yields
[l +dr, E+dE, 1) fe(h, E, 1) = fi(h, E, 1) fe(A +dA, E +dE, 1)

= 2 ( —dE fo fe(, E )2 dr +da /0 W) fo(r, E, r/)zdr’) (15)

h
Therefore,
32 f 32 fe
A E " AME E A E
(ara,\( ,E, r)d +8r8E( ,E, r)d )fe( LE, 1)

afg 8fz afé
—a—r(k, E.,r) <8)L(A’ E,r)dx + 8—E(A, E,r) dE)

= 2;21<—dE/ fg(A,E,r/)Zdr’+dA/ W(r’)fg(A,E,r’)zdr’>. (16)
0 0
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From this, provided thaf; (A, E, r) # 0, the logarithmic derivative, (A, E, r) satisfies

81)( 8ve 2
(M(A, E,r)dx + ﬁ(k, E,r) dE) fe(A, E 1)

— % ( —dE / feoh, E, r)2dr’ 4 da / W) fo(r, E, r/)zdr’). (17)
0 0

On the other hand, in the vicinity df = 0, A = A, v¢(, E, R) admits a limited expansion
d d
0k B R) = 00(he, O R) + 51 (ko 0. R)G = o) + 5 (k. O, R)E. (18)

According to (17) and (18), it follows that
2m R R
Ez<_E/ ff()‘*Cv O’ r/)zdr/—i_()"_)\'C)/ W(r/)f[()"C’ O,r’)zdr/>
0 0
£
= — o [0, 0, RIZ(E)

where g(E) is defined byv,(A, E,R) = —({/R)(1 + g(E)). Taking into account
equations (11) and (12), fof # 1/2, the two casex(E) «x E (¢ > 1/2) and
g(E) o« E?+D/2 (¢ < 1/2) yield the following expressions,

—E=B80—X) ¢>1/2 (19)
with
R R R
B=— / W (") f2(he, O, 7) dr’ / ( / 20, 0,7 dr + ——— f2(hc, O, R)) (20)
0 0 20 -1

and

—E = B(h — Ap)Z/ @D 0 <1/2 (21)
with
5 2h? <_mR COSTOT (L +1/2? [y W(r) f7(he. O, 1) dﬂ)z/ @+ 22)
mR? 72 fy(hc. 0. R)? '
For¢ = 1/2 we have
B 2 [ W) 20, O, ) dr!
_E_GOLJ&R (e, 0, R)? ) &)

whereG denotes the reciprocal of the functiarin(x) taken at the vicinity of zero.

Although the derivation of the variation of the energy ngéarmuses arguments strictly
valid for finite-range potentials, the generalization to any potential satisfying the usual
integrability conditions W (r) and rW(r) integrable) is easy to prove. Indeed, the above
expression foB does not depend crucially aR. This is obvious for the integrals involving
the potential, in which the upper limit can be set to infinity.

For the case > 1/2, the termRf;(i¢, O, R) tends to zero a®?~1, and the function
f¢ is square integrable. Thus the limiting value fis

+00 +00

B=— W (') f2 (e, O, 7) dr / fZ0ne, 0,7) dr’ (24)
0 0

identical to that of equation (8).
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For the two other cases, becay$ex constank r—¢ for r > R, 8 becomes independent
of R, except through the integral over the potential. More precisely

2n? < _ mcosmOT (€ +1/2)? [+
0

P=-r T

2/(20+1)
W(r') f7(he, 0.7 dr’) <12

(25)
in particular, we recover a quadratic law for the= O case, and

R
—E = G((A — 2102 / W (') fZ (e, 0, 7) dr’) (=1/2 (26)
0

where, in equations (25) and (26), lim, ., ¢ f,(r) is chosen equal to unity.

These few remarks, together with the fact that the p&rtan always be chosen in a
region where the asymptotic form of the wavefunction dominates, make our derivation valid
for any potential having a finite humber of bound states and becoming negligible beyond
some point.

We shall conclude this section with two illustrative examples, for which the analytical
solution is well known and can be found in many textbooks. Here we shall adopt the
notation of Fligge [9].

For the Hultlen potential

e—r/a
Vi) ==Vor—

the eigenvalues are given by

B B2 — n? 2
En—_V0< Znﬂ > :3

for the s-wave with 82 = 2m Voa?/h?.

The transition from the zero to one state (or the- 1 to n states) occurs for
V§ = h?/(2ma?) (or V5" = n?h?/(2ma?)). As expected, in the vicinity oVs" the
eigenvalues, follow a quadratic law

2

WV
3

m a enN2
The three-dimensional square well potential gives an opportunity to look for higher
¢ values. With the notation of [9]V(r) = —Vo; r < R and zero outside, the lowest

bound-state energ¥; is the lowest solution of
tan(xo§) = fe(xo, %)

for the ¢-wave, where fy(xo, £) is given in [9], in terms ofxg = R+v/2mVy/h° and
& = V(Vo—|E])/Vo. Here we study both casés= 0 and¢ = 1. The corresponding
values of f;(xo, §) are, respectively,

£
Sfo(xo, &) = —\/m
fix0. &) = xob (L= £

1- &2+ £2(1+ xoy/1 - £2)

The transition from the zero to one bound state occurg ferl thereforexqé is equal
to eitherr/2 (¢ = 0) orr (¢ = 1). The variation of the eigenenerdy in terms of Vo — Vj
given by

Il
o

|Ey| = L RA(Vo— VE2 ¢
U= M0 o
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and
|Eil=3Vo—Vs) =1
follows quadratic and linear laws according to our previous statements.

3. Scalar plus spin—orbit potentials

It is interesting to perform the same kind of investigation in the case of a potential having
a scalar and a spin—orbit component. We consider here only the case of a spin-1/2 patrticle.
In fact the problem would be similar (if not simpler) for any vector potential coupled to the
spin AW (r) - s. In the present work we focus our attention on the spin—orbit interaction.
Other cases may be developed in future work, if they are found to be of particular interest.
We chose the scalar part to be strictly repulsive, so that bound states can only originate
from the spin—orbit contribution. It can be parametrized in various ways. We choose here
a Thomas form. The total potential is thus written

A0
Wr)=U(r) — ;5U(r)£ . s. (27)

In the case of a repulsive central force, only the spin—orbit sublevels — 1/2 have
a chance to be bound, the= ¢ 4+ 1/2 partners staying in the continuum. Thus we are left
with (¢ > 1):

) 2m s 19 € +1)
flOLE, r) = <E2(—E U@+ 5+ V) + ) fOLE. D). (28)

The Bargmann inequality becomes

)\m £+1 /*OO B
0

nETe UGy dr.
P20+ 1 (N

Although the previous conclusions about the transition law ardyrate still valid we
investigate here a soluble model, namely the square well potential:

ny x

U(}") = Uo@(Ro — I"). (29)
The radial Schisdinger equation for this case reads
- A+ -~ Le+1
i kor) = <k2+Uo@(Ro—r)— é( )U05(F—Ro)+ ( 2 )>fe()»,k, r)  (30)

where we have put2 = —2mE /h?, Uy = 2mUy/R°.

The § distribution is known to produce a discontinuity in the derivative of the
wavefunction atRy. Assuming thatf,(A, k, r) is constant over an infinitesimal interval
centred onR, the difference between the right and left logarithmic derivatives of the
wavefunction is given by

fi k) fi k)
f(()‘ﬂksr) R f(f()\‘skar)

The solutions of (30) for a bound state are given by

FoOu k1) = xJo(x) x = ry k2 + U r < Ro (31)
feGn, k, r) = C(k)e™ ™ Py(kr) r > R

where C (k) is obtained from the continuity condition at= Ro. Use is made here of
the spherical modified Bessel function of the first kindx) = /7 /(2x)I11/2(x), and of

A 3
=——{+DUo.
. 2Ro 0
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the polynomialP,(x) defining the asymptotic behaviour of the modified Hankel’s first kind
function K,1/2(x)+/2x /7 (see Abramowitz and Stegun [7] or Edgli [8]):

4
I+ p)! _
Pk =§ DT (2kr)P. 32
o (kr) I,ZOP!(I—P)!( r) (32)

It is straightforward to obtain the following equation for the logarithmic derivative at
Ro:
Py(kRo) — P;(kRo)/k
Py(kRo)

Je(x0) + xoje(x0)%
Je(x0)

wherexg = Rov/k? + Uy. Here the symbo] denotes the derivative with respectio
In the vicinity of k = 0, the right-hand side of (33) therefore reads

—11+—¥L—HR2 vi>1
2-1 ° -
Similarly, the left-hand side of (33) reads = 0, A = A¢)

Je(xe) + xcje (xc); + (x0 — x0) —Je (xc);je (x¢) + xc(jgz(xc) - jgz(xc);) + L€+ 1)/xc]~52(xc)
Je(xc) jf(xc)

A—Ac
2
wherex. = Ro\/ﬁo. Since(xo — xc) varies withk?, E is linearly dependent oa — A, as

in the scalar case,

—E=B0—2X) (34)

A -
~ 500t +1) = —kRo (33)

A ~ -
—§w+nw— ¢+ 1)Uy

where
g (¢ + D037 (xe)
2m (26 + 1DJe(xe)2/ (26 — 1) = (L+ 20x0]u(¥o) jes1(xe) — 22771 (xc)

To get equation (35), use is made of the recurrence relation

(35)

- I .
Je (xc); = ;]Z (x¢) + Jes1(xc).
c

It should be noted that such a critical behaviour, obtained by expanding both sides of
(33) aroundk = 0 andXx = A, results from the fact that the linear term invanishes.
As far as the Bessel function is concerned, since the argument deperdacsording to
Vk2 + Uy, the expansion of the left-hand side yields a term proportion&F to
For the spin—orbit potential, it is interesting to look for the behavioukofgainste.
In the present model it is given by

Jer1(xc)
]~L’ (x¢) )

Since thej,(x;) are positive definite, it shows that > 2L7(; Y2 +1)/(¢ + 1), which
gives for A.(¢) a lower limit increasing with¢. Exact values ofi.(¢) are displayed in
figure 1. For low values of¢, x; < 1.8, (remember that? = UgR2 fo+°° rU(r)dr), Ac
is an increasing function of. Beyond this ‘empirical’ value of 1.8); increases only for
high enough values of. The regime is thus not unique. It is clearly shown that the most
intuitive situation, in whichi is a continuously increasing function éf is not universal.
Consequentlyr:(¢) depends on the geometry of the potential.

A .
%(z + DUy = (20 + 1) + xc
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Figure 1. Critical valuei as a function of the orbital momentuérand the parametet;, linked
to the geometry of the potential (see text).

4. Conclusions

In the present work we have studied the variation of the energy eigentabfea weakly
bound particle in the vicinity of a critical value of the strength constantFor a potential

AW (r) becoming negligible beyond a given radius, the critical value corresponds to the
transition between the zero and one bound state.

For scalar, spherically symmetric potentialsyaries quadratically withi(— A¢) around
Ac for the s-state. The variation is linear fdr> 1. In fact, by letting¢ to be a continuous
parameter of the radial Sdhdinger equation, we found that the evolution of the power law
is continuous from-1/2 < ¢ < 1/2.

Investigating the case of a spin—orbit potential, for a spin-1/2 particle combined with
a scalar repulsive potential, we show that the endtgglso follows a linear power law
arounda, for the subspace of states wijh= ¢ — 1/2.

The present discussion was focused on the transition between the zero and one bound
state. The same arguments can be used to investigate the transition betweer the
andn bound states. Since we are primarily interested in potentials with a finite number
of bound states, n should not be too large. The basic arguments, however, are based on
the asymptotic behaviour of the wavefunctions and, thus, are independent of the number of
nodes. In particular the transition laws still hold.

Although it may have no application, it is also interesting to note that in the case
of a scalar potential the ensemble of the critical valugss univocally connected to the
ensemble of the bound-state energies when the potétitialquation (3), is purely attractive
and satisfie%roo ~/—W(r)dr < +oc0. Indeed, if the critical values are known, they can be
used to reconstruct the potential [5, 10].
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Appendix A

We start from equation (3):

2

1
%fz(x,E,r): (2_”2“< Eawey+ D

) fe Er). (A1)

Following [5, 10], use is made of the Liouville transformation

re— Z(r) = / /——W(r’)dr

1/4
St E r) = < hW(F)) Ye(A, E, Z).

Equation (Al) becomes

dzzwé/(/\ E,Z2)+ A —q@)Ye(X, E, Z) =0 (A2)
where
R W/, 5 w2 0L +1) E
9(2) = 2m < aw2"" 16 W3( r(2) = Z(Z)W(r(Z))) + W(r(2)) (A3)

For the potentials we are considering in the present wdtk,e [0, I] where
I = f0+°°\/—(2m/EZ)W(r) dr < 4o00. A bound state of energy-E corresponds to
fe(x, E,0) = fu(A, E, +00) = 0 which is mapped inta/, (1, E,0) = ¥,(A, E, I) =

For A = 0, equation (Al) has no bound state. This means that fixing the boundary
conditions at one extremity of the segment, 3ay0, £, 0) = 0, we have automatically
¥ (0, E, I) # 0. The strength parameter however, is acting as a Lagrange multiplier,
and can be chosen in a way to ensy€a, E, I) = 0 together withy, (1, E, 0) = 0. Note
that E plays no major role; apart from being negative it can be chosen close to zero.

To show that the value of corresponding to a given energyE must be positive and
finite, we multiply the Schizdinger equation (A1) by, (A, E, r) from the left and integrate.
This yields

B2 o oo

— fg(A,E,r)zdr—Af \W ()| fe(h, E, r)?dr

2m Jo 0
72 400 )\‘ E 2 +o0
g tern [ O e [ o pa
2m 0 0

The four integrals being positive definit&, < O requiresk > 0.
Finally, using the virial theorem [11], we have

A -5 f@()VsEar) r 7|W(r)| dr—/ |W(r)|f5()"vEsr) dr)
2 0 dr 0

+00

=E fo(x, E, r)?dr. (Ad)
0

BecauseE < 0, we have
+o0 3 +0o0 d
/ (W) feh, E, r)?dr > —— feh, E r)?r <|W(r)|> dr
0 2 0 d}’
For the class of potentials considered hgfgé?o W ()| fo(r, E, r)?dr is finite and thus,
from (A4), A is finite.
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Appendix B
The modified Bessel function of the third kind is defined by [8]

K,(x) = Zsm( )(1 v(x) = 1,(x))

in terms of the function/,. Remembering that we have defingd(x) as ji(x) =
w/(2x)1e41/2(x) we have

qe(x) = (J—e—1(x) = Je(x)).

X
cos({r)

The present definition ofgy(x) corresponds to the asymptotic behaviour
lim, - 100 ge(x) €Xp(x) = 1. Taking into account

) (x/2)2m+5
Jolx) = Zm|p(m+z+3/2>

we easily obtain for non-integer values of- 1/2,

VT 2R @ (x/2) 22
qe(x) = cosfm) x' (n; m!I'(m — €+ 1/2) Z «m!\T(m +1 + 3/2)) (B1)

Using the properties of thE function it becomes

Jr 2 (_ m<L=1/2 (i)Zm I —m+1/2) sin(r(€ —m —1/2))
2

qe(x) =

cogtx) xt — m! T
(x/2)2’” 400 (x/2)2m+22+1
+m>;/2mlr'(m—ﬂ+l/2) _;)m!l"(m+l+3/2)> 52

The expression of, for ¢ = n + 1/2,n € N is deduced from expression (B2) at the
limit £ — n+1/2,

1 2 n+1/2 n ., ( _ ),
Qn+1/2(x)=ﬁ(x> (Z( )

1 2n+2042 Y (n +m + 2) + Y (m + 1) — 2In(x/2)
+E)" Z( ) m!(n +m + 1) ) (B3)
or equivalently remembering that= ¢ — 1/2,
£—-1/2 2m (f — —1/2)
= 5 () (S ense
2n+20+1 Y (0 +m + 3/2) + Y (m + 1) — 2In(x/2)
0+1/2
T Z( ) ml(€ +m + 1/2)! )
(B4)

The transition law around — A requires the knowledge of the logarithmic derivative of
g (x) at the vicinity of zero. Equation (B1) incorporates two kinds of powers of the variable
x: x2" andx?" 241 We have & +2¢ 4+ 1 > 2 (V£ > 1/2), and the first appearing power
of x is quadratic. For low values of, we get

ge(x) ox 1+ ax?.
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For ¢ < 1/2 the term inx?*! dominates with respect te? and we find

ge(x) o 1+ ax®*L,

The logarithmic derivative of, then satisfies (11) and (12). Fér= 1/2 use is made

of (B4) where the dominant term, besides the constant, behaves?likér) ~ x2In(x?).

References

(1]

(2]
(3]
(4]
(5]

(6]
(7]
(8]
El
[10]
[11]

Bulboaca I, Lassaut M and LomhR J 1994Proc. 6th Int. Conf. On Clusters in Nuclear Structure and
Dynamics (6—9 September 1994, Strasbourg, Fraecef Haas

Martorell J and Sprug D W L 1992Phys. RevB 45 11 960

Goldstone J and JafR L 1992Phys. RevB 45 14100

Georgelin Y and WalleJ C 1994Phys. RevD 50 6610

Chadan K and Sabatie® C 1989Inverse Problems in Quantum Scattering The@nd edn (New York:
Springer)

Chadan K and Montes Lozano A 19€hys. Rev164 1762

Abramowitz M and Stegu | A (ed) 1970Handbook of Mathematical Functiormth edn (New York: Dover)

Erdélyi A 1953 Higher Transcendental Functionsol || (New York: McGraw-Hill)

Flugge S 1994&ractical Quantum Mechanic&nd edn (Berlin: Springer)

Chadan K and Musette M 198Z. R. Acad. Sci., Pari805 1409

Lombad R J and MoszkowskS A 1994 Nuovo Cimentd 109 1291



